

AAG-003-001616 Seat No. _____

B. Sc. (Sem.-VI) (C.B.C.S.) Examination

April / May - 2016

Mathematics : BSMT-601(A)

(Graph Theory & Complex Analysis-2)

(New Course)

Faculty Code : 003

Subject Code : 001616

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions :

- (1) All questions are compulsory.
- (2) Section-A carries 20 marks of MCQs and Section-B carries 50 marks.
- (3) Answer all MCQs in answer book only.

(6) In a connected graph G any minimal set of edges containing at least one branch of every spanning tree is called _____.

(A) Parallel edges (B) Cut-set
(C) Circuit (D) None of these

(7) A Hamiltonian circuit in a graph G of order n consists of exactly _____ edges.

(A) $n - 1$ (B) n
(C) $n + 1$ (D) None of these

(8) A tree in which there is exactly one vertex of degree two and each of the remaining vertices is of degree one or three is called _____.

(A) spanning tree (B) non-rooted tree
(C) binary tree (D) None of these

(9) Regions of a connected planar graph with 4-vertices and 6-edges are _____.

(A) 1 (B) 4
(C) 2 (D) None of these

(10) The dimension of circuit subspace W_T is equals _____ of the graph.

(A) rank (B) nullity
(C) order (D) None of these

(11) A polynomial of degree n has pole of order n at _____.

(A) infinity (B) zero
(C) anywhere (D) None of these

(12) The pole of first order is known as _____.

(A) complex pole (B) simple pole
(C) singularity (D) None of these

(13) The radius of convergence of power series $\sum \frac{z^n}{n!}$ is

— .

(A) $z = 0$ (B) $z = 1$
 (C) $z = \infty$ (D) None of these

(14) To integrate $\int_0^\infty \frac{1}{1+x^2} dx$ we will use a contour _____.

(A) real axis and unit circle

- (B) real axis and lower half of $|z| = R$
- (C) real axis and upper half of $|z| = R$
- (D) None of these

(15) The function $f(z) = \cos z$ is _____.

(A) analytic-everywhere

(B) singularities at $z = \frac{n\pi}{2}$

(C) singularities at $z = \frac{(n+1)\pi}{2}$

(D) None of these

(16) The value of the integral $\oint_C \frac{e^z}{z-2} dz$, where $C : |z| = 1$

3 is _____.

(A) $2\pi ie^2$ (B) $2\pi i$
(C) e^2 (D) None of these

(17) The singularity of the function $f(z) = \frac{z - \sin z}{z^2}$ is

_____ •

(A) $z = 0$ (B) $z = 2$
 (C) $z = -2$ (D) None of these

(18) The fixed points of the mapping $w = \frac{5z+4}{z+5}$ are

(A) 2, 2 (B) 2, -2
(C) -2, -2 (D) None of these

(19) The invariant point of the transformation $w = \frac{z-1}{z+1}$ are

_____.

(A) $z = \pm 1$ (B) $z = \pm i$
(C) $z = \pm \frac{i}{2}$ (D) None of these

(20) If the function f has a pole of order m at $z=a$ and

$$g(z) = (z-a)^m \cdot f(z) \text{ then}$$

(A) $\text{Res}(f; a) = \frac{g^{m-1}(a)}{(m-1)!}$

(B) $\text{Res}(f; a) = \frac{g^m(a)}{(m-1)!}$

(C) $\text{Res}(f; a) = g^{m-1}(a)$

(D) None of these

2 (a) Attempt any **three** :

6

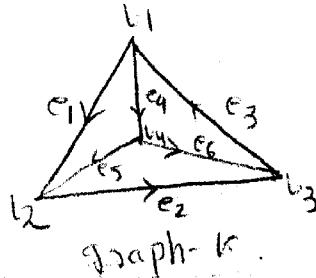
- (i) Define : Regular Graph, Complete Graph.
- (ii) What is size of a K-regular (n, e) graph ?
- (iii) How many vertices are needed to construct a graph with 6-edges in which each vertex is of degree two ?
- (iv) Define Rank and nullity of a graph. What are the rank and nullity of complete graph K_n ?
- (v) Define : Path Matrix with example.
- (vi) Define : Proper Vertex Colouring and Chromatic Number of a Graph.

(b) Attempt any **three** : 9

- (i) State and prove first theorem of graph theory.
- (ii) Prove that complete graph K_n has always a Hamiltonian Circuit.
- (iii) Prove that a tree with n -vertices has $n-1$ edges.
- (iv) Show that the number of vertices in a Binary tree is always odd.
- (v) Define : Incidence Matrix and state its properties.
- (vi) Prove that every tree with two or more vertices is 2-chromatic.

(c) Attempt any **two** : 10

- (i) State and prove the necessary and sufficient condition for a graph to be an Euler Graph.
- (ii) If G is a graph with n -vertices, e -edges, f -faces and k -components, then show that $n-e+f = K+1$.
- (iii) In usual notation prove that (W_G, \oplus) is an abelian group.
- (iv) Prove that rank of an incidence matrix $A(G)$ of a connected graph G , with n -vertices is $n-1$.
- (v) Find minimal decyclization for the following graph.



3 (a) Attempt any **three** : 6

- (i) Find region of convergence and radius of

convergence for the series $\sum_{n=1}^{\infty} \frac{z^n}{3^n + 1}$

- (ii) Prove that

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$$

(iii) Define pole of a complex function.

(iv) Find residues of $f(z) = \frac{z+2}{(z-1)(z-2)}$ at simple poles.

(v) Find critical point of $w = \frac{z-1}{z+1}$

(vi) Find fixed points of the transformation

$$w = \frac{-2 + (2+i)z}{i+z}$$

(b) Attempt any **three** : 6

(i) Expand $\frac{1}{(z-1)(z-2)}$ in Laurent's series for $|z| < 2$.

(ii) If Z_0 is the m^{th} order pole of complex function $f(z)$ then prove that

$$\text{Res}(f(z), z_0) = \frac{\phi^{m-1}(z_0)}{(m-1)!} \text{ where } \phi(z) = (z - z_0)^m f(z)$$

(iii) Evaluate $\int_C \frac{2z+3}{z(z-1)} dz$, $C: |z|=2$

(iv) Prove that $\int_0^{2\pi} \frac{d\theta}{2 + \cos\theta} = \frac{2\pi}{\sqrt{3}}$

(v) Show that the composition of two bilinear maps is again a bilinear map.

(vi) Discuss the critical points of bilinear map $w = \frac{az+b}{cz+d}$,

$$ad - bc \neq 0$$

(c) Attempt any **two** :

10

(i) State and prove Taylor's infinite series of an analytic function $f(z)$

(ii) Expand $f(z) = \frac{1}{z^2 \sin h_2}$ in Laurent's series for

$z_0 = 0$ hence deduce that $\int_c \frac{1}{\sin h_2} dz = 2\pi i$ and

$$\int_c \frac{1}{z^2 \sin h_2} dz = \frac{\pi i}{3}$$

(iii) Using residue theorem prove that

$$\int_0^\infty \frac{dx}{x^4 + 1} = \frac{\pi}{2\sqrt{2}}$$

(iv) Prove that $\int_0^\infty \frac{dx}{(x^2 + a^2)^{n+1}} = \frac{\pi (2n!)}{(2a)^{2n+1} (n!)^2}$

where $a > 0$.

(v) Obtain the transformation of real line (axis) of

z -plane, under the mapping $w = \frac{2+iz}{i+4z}$